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Abstract

We study stochastic gradient descent (SGD) with
local iterations in the presence of Byzantine
clients, motivated by the federated learning. The
clients, instead of communicating with the server
in every iteration, maintain their local models,
which they update by taking several SGD itera-
tions based on their own datasets and then com-
municate the net update with the server, thereby
achieving communication-efpciency. Further-
more, only a subset of clients communicates with
the server at synchronization times. The Byzan-
tine clients may collude and send arbitrary vectors
to the server to disrupt the learning process. To
combat the adversary, we employ an efpcient high-
dimensional robust mean estimation algorithm at
the server to blter-out corrupt vectors; and to an-
alyze the outlier-bltering procedure, we develop
a novel matrix concentration result that may be
of independent interest. We provide convergence
analyses for both strongly-convex and non-convex
smooth objectives in the heterogeneous data set-
ting. We believe that ours is the brst Byzantine-
resilient local SGD algorithm and analysis with
non-trivial guarantees. We corroborate our theo-
retical results with preliminary experiments for
neural network training.

1. Introduction

In thefederated learningFL) paradigm Konecn!, 2017,

(Dean et al.2012 (e.g., training a machine learning model
without collecting the clientsO data, which, in addition to
reducing the communication load on the network, provides
a basic level of privacy to clientsO data), FL has emerged as
an active area of research recently; d€aiouz et al, 2019

for a detailed survey. Stochastic gradient descent (SGD)
has become a de facto standard in optimization for train-
ing machine learning models at such a large sdastou,

201Q Kairouz et al, 2019 McMahan et al.2017), where
clients iteratively communicate the gradient updates with
the central server, which aggregates the gradients, updates
the learning model, and sends the aggregated gradient back
to the clients. The promise of FL comes with its own set of
challengesKairouz et al, 2019: (i) optimizing withhetero-
geneouslata at different clients b the local datasets at clients
may be Onon-i.i.d.O, i.e., can be thought of as being gener-
ated from different underlying distributioni) slow and
unreliable network connections between server and clients,
SO communication in every iteration may not be feasible;
(iii) availability of only a subset of clients for training at a
given time (maybe due to low connectivity, as clients may
be in different geographic locations); afid) robustness
against malicious/Byzantine clients who may send incorrect
gradient updates to the server to disrupt the training process.
In this paper, we propose and analyze an SGD algorithm
thatsimultaneoushaddresses all these challenges. First we
setup the problem, put our work in context with the related
work, and then summarize our contributions.

We consider an empirical risk minimization problem, where
data is stored &R clients, each having a different dataset
(with no probabilistic assumption on data generation); client
r | [R] has dataseb,. LetF, : R " R denote the

Konecn! et al, 2016 McMahan et al.2017 Mohri et al, - - . .
2019, several clients (e.g., mobiles devices, organizationd®¢@! 0s function associated with the datdsef which
etc.) collaboratively learn a machine learning model, Wherés_dephed aE,(?<) ' Eiry ine1[Fri ()], wheren, = |D],
the training process is facilitated by the data held by the paf-iS uniformly distributed ovefn,]J ! {1,2,...,n.}, and
ticipating clients (without data centralization) and is coordi-Fri (X) is the loss associated with theth data point at
nated by a central server (e.g., the service provider). Due t§li€ntr with respect to (w.r.t.x. Our goalis to solve the

its many advantages over the traditional centralized learninéellowing miniﬁnization prOPFLeW "
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In the absence of the above-mentioned FL challenges, w@ur contributions. In this paper, we tackle heterogeneity
can minimize(1) using distributedranilla SGD, where in  assuming that the gradient dissimilarity among local datasets
any iteration, server broadcasts the current model paramis-bounded (se€5]), and propose and analyze a Byzantine-
ters to all clients, each of them then samples a stochastiesilient SGD algorithmAlgorithm 1) with local iterations
gradient from its local dataset and sends it back to the serveand client sampling under the bounded variance assumption
who aggregates the received gradients and updates the glotial SGD (seg2)). We provide convergence analyses for
model. However, this simple solution does not satisfy thestrongly-convex and non-convex smooth objectives.

FL challenges, asveryclient communicates with the server
(i.e., no sampling of clients) iaverySGD iteration (i.e., no
local iterations), and furthermore, this solution breaks dow
even with a single malicious clienBlanchard et a).2017).

For strongly-convex objectives, our algorithm can bnd ap-
roximate optimal parameters exponentially&h) fast, and
or non-convex objectives, it can reach to an approximate
stationary point with a speed 97‘7 SeeTheorem Ifor
Related work. Recent work have proposed variants of theconvergence results. The approximation error in the opti-
above-described vanilla SGD that addresmeof the FL  mization solution comprises of two terms, one is because
challenges. The algorithms iBésu et al.2019 Haddad- to the stochasticity in gradients (due to SGD) and is equal
pour & Mahdavj 2019 Haddadpour et 812019 Karim-  to zero if we work with full-batch gradients, and the other
ireddy et al, 2020 Khaled et al.202Q Li et al., 2020 Sahu  term arises because of heterogeneity in local datasets. See
et al, 2020 Yu et al, 20190 work under different hetero- a detailed discussion iBection 2.2on the approximation
geneity assumptions but do not provide any robustness terror analysis and the convergence rates, and also for the
malicious clients. On the other hand\listarh et al, 2018  reason behind obtaining rates that are off by a factat of
Blanchard et a).2017 Chen et al.2017 Data & Diggavi  when compared teanilla SGD b looking ahead, the reason
2020h Su & Xu, 2019 Xie et al, 2019h Yin et al, 2018 is working with weak assumptions.

2019 provide robustness, but with no local iterations 910 tackle the malicious behavior of Byzantine clients, we

Yorrow tools from recent advances in high-dimensional ro-

(either same or i.i.d.) data across all clients. A different line S : ) .
. . bust statistics@iakonikolas & Kane2019 Diakonikolas
of work (Chen et al.2018 Data & Diggavi 2019 20208 5019 | i et al, 2018 Steinhardt et 32018 in par-

Data et al. 2019 2021, Ghosh et al.2019 Li et al., 2019a . S . .
Rajput et al, 2019 provide robustness with hetero eneOusncular, we use the polynomial-time outlier-pltering proce-
P ’ P g dure from Diakonikolas et al.2019, which was developed

data, but without local iterations or sampling of Clients:for robust mean estimation in high dimensions. In order to
Chen et al. 201§, Rajput et al. 2019, Data et al. £019 use their algorithm (described &Kgorithm 2) in our setting

20217 use coding across datasets, which is hard to implet- . . o . : .
. O C ) hat combines Byzantine resilience with local iterations, we
ment in FL; Li et al. 0193 change the objective function . .
%evelop a novel matrix concentration result (3&éeorem 2,
et al. @019 effectively reduce the heterogeneous problem\m.“c.h may be of mdepenglent interest. As far as we kPOW'
. . this is the brst concentration result for stochastic gradients
to a homogeneous problem by clustering, and then learning . . )
. . . th local iterations on heterogeneous data.
happens within each cluster having homogeneous data; and
Data & Diggavi 0203 studied SGD with heterogeneous We believe that ours is the brst work that combitoesl
data under the same assumptions as ours, but without locaérationswith Byzantine-resiliencéor SGD and achieves
iterations or client sampling. Incorporating local iterations non-trivial results. Not only that, we also analyze our algo-
with Byzantine adversaries makes it signibcantly more chalrithm onheterogeneoudata and allovsampling of clients
lenging as it requires deriving a new matrix concentrationNote that the earlier work that provide robustness (without
bound (se@heorem 2 and different convergence analyses.local iterations or sampling of clients) either assume homo-

. . . geneous data across clienddigtarh et al, 2018 Blanchard
Xie et al. Q_019§) also analyzeq SGD in the FL setting, b_ut etal, 2017 Chen et a}.2017 Data & Diggavi 2020h Su &
the approximation error (even in the Byzantine-free setting

of their solution could be as large @D ? + G?), whereG u, 2019 Yin et al, 2018 2019 or require strong assump-

is the gradient bound arid is the diameter of"the parameter ;fnnciioiicgi:zttgf gg?gg?rigsgf?gisaziug%%m on local
space that contains the optimal paramexerand all the ’ '

local parameters! ever emerged at any client [R]in Paper organization. We describe our algorithm and state
any iteratiort ! [T]; this, in our opinion, makes their bound the convergence results 8ection 2 In Section 3we de-
vacuous. In optimization, one would ideally like to have scribe our main technical tool, a new matrix concentration
convergence rates depend Brwith a factor that decays result for analyzing the robust accumulated gradient esti-
with the number of iterations, e.g., Wit%‘—l or #% asalsoin mation procedure. We provide empirical evaluation of our
Theorem 1In Section 4 we also empirically demonstrate method inSection 4 Omitted details/proofs are given in
the poor learning performance of their algorithm. appendices, provided as part of the supplementary material.
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2. Problem Setup and Our Results 2018 Blanchard et a).2017 Chen et al. 2017 Data &
) ) _ ) Diggavi, 2020h Su & Xu, 2019 Yin et al, 2018 2019
In this section, we state our assumptions, describe the agf by explicitly introducing redundancy in the system via
versary model and our algorithm, and state our Convergem@oding-theoretic solutionsOhen et al.2018 Data et al,
results followed by important remarks about them. 2021 Rajput et al, 2019: however, these approaches fall
Assumption 1(Bounded local variances)rhe stochastic  short of in the FL setting.
gradients sampled from any local dataset have uniformly _ . . .
bounded variance ovet for all clients, i.e., there exists a QOS/OSFumIng Ibounded gradlepts (.)f local functions (i.e.,
Pnite! , such thatforalix ! Cr ! [R], we have T (X.)$ G folr some bnitd3) is a common assump-
tion in literature with heterogeneous data; see, for example,

Eir o n, 19%Fri (X) & %F, (x)$* ' 12 (2) (Lietal,202Q Yu etal, 2019h without adversaries) and
(Xie et al, 2019h with adversaries). Note that under this
assumption, we can trivially bound the heterogeneity among
{ocal datasets b$%F, (x) & %Fs(x)$' 2G. So, assum-
ing bounded gradients not only simplibes the analysis but
@!so obscures the effect of heterogeneity on the convergence
bounds, whiclkAssumption Zlearly brings out.

It will be helpful to formally debPne mini-batch stochastic
gradients, where instead of computing stochastic gradien
based on just one data point, each client samplés 1
data points (without replacement) from its local dataset an
computes the average bfyradients. Forany ! RY,r !

[R],b! [n,], consider the following set Bounds on! 2 and "2 in the statistical heterogeneous
$ % & model. Since all our results (matrix concentration and
F85(x) := 1 %F,; (X): Hyp ! [nr] 3) convergence) are given in termslofand”, _to sho_w thg
b b clear dependence of our results on the dimensionality of

itH
’ the problem, we bound these quantities in the statistical

Note thatg, (x) ! y F®P(x) is a mini-batch stochastic heterogeneoudata model under different distributional as-
gradient with batch sizbat clientr. It is not hard to see the sumptions on local gradients; sAppendix Efor more de-

following, which hold forallx ! Cr! [R]: tails, where we prove the following: For the SGD variance
bound, we show that if Io5;al gradients have sub-Gaussian
Elg, (x)] = %F(x), (4)  distribution, thent = O(’ dlog(d)). For the gradient
E$g, (x) & %F, (x)$ ' ! 2/b. (5) dissimilarity bound, we show that if either the local gra-

dients have sub-exponential distribution and each worker
Assumption 2(Bounded gradient dissimilarity)The differ-  has at leash = ! (dlog(nd)) data points or local gradi-
ence of the local graczien%l:r (x),r! [R]and the global  ents have sub-Gaussian distribution anid N is arbitrary,
gradient%F (x) = & rRzl %F; (x) is uniformly bounded then" ' " eant+ O(" dlog(nd)/n), where" nean denotes
overRY for all clients, i.e., there exists a Pnite such that  the distance of the expected local gradients from the global
gradient. Note that we make distributional assumptions on
data generationnly to derive bounds oh, " ; otherwise, all
our results hold for arbitrary datasets satisfyiby (6).

$%F, (x) & %F(x)$*' "2, )x! Cr! [R]. (6)

Assumption lhas been standard in SGD literatufessump- L Th h h "
tion 2 has also been used earlier to bound heterogeneity iffdversary model. Throughout the paper, we assume tiat
datasets; see, for examplej ¢t al.,, 2019h Yu et al, 20193 denotes the fraction of th€ communicatinglients that are
which study decentralized SGD with momentum (Withouthrrum’ l.e., atmost (out Of_K )_cl|e.ntslthat communicate
adversaries). Note that when clients compute full-batch grzi’-v'th the slerve_r at synchronlzatlop indices may be corrupt,
dients, we havé = 0 in Assumption 1similarly, when all whereK ' R is the number of clients chosen at synchro-
clients have access to the same dataset aslist4rh et al nization indices. This translates to, in therst casehaving

2018 Blanchard et a).2017), we have’ = 0 in Assump- % fraction (i.e., a total ofK ) of corrupt nodes in the entire
tion 2. Note that(6) can be seen asdeterministiccondition ~ SYStem, as in the worst-case, all the corrupt nodes can be
on local datasets. under which we derive our results selected in a communication round; however, in practice,

due to several constraints, such as the unreliable network
A note on Assumption 2 In the presence of Byzantine connection (for which the adversary has no control over), we
adversaries, since we do not know whidR clients are  cannot expect that the server will select all corrupt nodes in
corrupt, we have to make some structural assumption on thgll iterations. The corrupt clients may collude and arbitrarily
data that can provide relationships among gradients sampled————— o _ _
at different nodes for reliable decoding, afsisumption 2 See Khaled et al. 2020 for a detailed discussion on the inap-

. . . _propriateness of making bounded gradient assumption in heteroge-
is a natural way to achieve that. There are many alternativ eous data settings and how it obscures the effect of heterogeneity

to establish this relationship, e.g., by assuming homoges convergence rates (even without robustness).
neous (same or i.i.d.) data across clieitstarh et al,
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Algorithm 1 Byzantine-Resilient SGD with Local Iterations a decoding RAGE and update the global modddased
1: Initialize. Sett :=0,x%:= 0,)r ! [R], andx := 0 on that. We present our Byzantine-resilient SGD algorithm
. . . ] r - ) . ] . . . . . . .
Here,x denotes the global model and denotes the With local iterations inAlgorithm 1.
local model at client attime 0. Fix a constant step-size Qur convergence results are for both strongly-convex and

$ and a mini-batch sizb. non-convex smooth objectives, and we state them in the
2: while (t* T)do following theorem. Since our main focus in this paper is
3:  Server selects an arbitrary subke# [R]of [K| = on combining Byzantine resilience with local iterations, to
K clients and sends to all clients inK. avoid the technical complications arising due to the projec-
4. Aliclientsr ! Kdoinparallel: tion operator (in linel7), we prove our results assuming
5:  Setx; = X. that the parameter spackis equal toRY. The analysis
6:  while (true)do involving the projection can be done using the techniques
7: Take a mini-batch stochastic gradign{xt) ! y in (Yin et al, 2018.
F#°(x}) and update the local mode!: Theorem 1 (Mini-Batch Local Stochastic Gradient De-
xtox o xb & g, (xb)); t* (t+1). scent) LetK; denote the set df clients that are active
8: . at any given timg ! [0 : T] and# denote the fraction
: if ¢! I1)then . : L :
9 Let)‘(ﬁ = x1, if clientr is honest, otherwise can of .corerll'pt clients |nKt_. For a global objective funcﬂ_on
be an arbitrary vector iR¢. F:R R, let Algorithm 1generate a sequence of iter-
i . . tes{x! :t! [0:T],r ! K¢} when running with a bxed
10: Sendx; to the server and break the innehile a R ; A
loop. step-sizés = 5. Fix any constzlazntlf% 0.1f# %&#
11: end if then with probabilityl & - exp(& LUK the sequence
12:  end while of average iterategx' = 1" Kk Xr ot [0:Th
13: At Server: satisfy the following convergence guarantees:
14:  Receive{X,r ! K} from the clients irk. ¥ Strongly-convex: If F is L-smooth forL ( 0,° and
15:  Foreveryr | K, Ie_tgn accu = (Xr & X)/ 8. L-strongly convex fop > 0,4 we get:
16:  Apply the decoding algorithniRAGE (seeAlgo- | #
rithm 2) on{8, e F ! K} . Let ElxTax 2 18-_H Ti0gyi2y 18,
16HL n2

gaccu:: RAGE(gr,accur l K)

17:  Update the global model * " ¢(x & $8,...), where ¥ Non-convex:If F is L-smooth forl. ( 0, we get:

" ¢ denotes the projection operator onto theGet 1"T , -E[F x9) &E[F(x)] 9
18: end while T ET%F(): 2 = + 2o
t=0 16HL 2
/..
In both the bounds above¥ = OSH—Z + % +
deviate from their pre-specibed programs: at synchroniz&H"2  with & = O !3(#+#), where!3 =

tion indices, instead of sending the true stochastic gradien'@zilﬁ 1+ 397+28H2"2, and expectation is taken over
(or local models), corrupt clients may send adversariallthe sampling of mini-batch stochastic gradients.
chosen vectors to the server.

We prove the strongly-convex part @heorem 1lin Ap-

2.1. Main Results pendix Band the non-convex part #kippendix C In addi-
. tion to other complications arising due to handling Byzan-
Letlr = {t1,t2,...,t,...}, witht; = 0, denote the set e clients together with local iterations, our proof deviates

of synchronization indices (whereaxio [ti+1 &ti| = H)  from the standard proofs for local SGD: We need to show
when the servearbitrarily selects a subset®f * Rclients o recurrences, which arise because at synchronization
(denoted bK # [R]) and sends the global model (denoted jngjces, server performs decoding to blter-out the corrupt

by x) to them; each client ! K updates its local modal;  cjients, while at other indices there is no decoding, as there
by taking SGD steps based on its local dataset until the nex§ no communication. The proof of the Prst recurrence is
synchronization time, when all clients & send their local signibcantly more involved than that of the other one.
models to the server. Note that some of these clients m

be corrupt and may send arbitrary vectbiServer employs ~Because of this and for the purpose of analysis, we can assume,
without loss of generality, that in between the synchronization

2Note that the only disruption that the corrupt clients can causdndices, the corrupt clients sample stochastic gradients and update
in the training process is during the gradient aggregation at syfheir local parameters honestly.
chronization indices by sending adversarially chosen vectors to  °F(y) ! F(x)+"# F(x),y$x% 5&$y&, ' x,y ( R
the server, and we give unlimited power to the adversary for that. “F(y)) F(x)+"# F(x),y$x% 2&x$y&, x,y ( R%.
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2.2. Important Remarks About Theorem 1 need$ ' BH% to bound the drift in local parameters across

Failure probability. The failure probability of our algo- clients; seé_enjma 2 Insteaq, it we .had g;sumed a stronger
) ) T 1210 1)K ) bounded gradient assumption (which trivially bound the het-
rithm is at mosty- exp(& —=z=—), which though scales  grggeneity, as explained on pa@ethenLemma 2would
linearly with T, also goes down exponentially wikh. Asa  hold for a constant step-size (€.8.5 L would sufpce),

result, in settings such as federated learning, where numbgghich would lead to vanilla SGD like convergence rates.
of clients could be large (e.g., in tens/hundreds of millions)

and server samples tens of thousands of them, we can ggt
a very small probability of error, even if run our algorithm *+

for a long time? Note that the error probability is due to |, this section, brst we discuss the inadequacy of traditional
thestochastisampling of gradients, and if we want a OzeroGhethods (such as coordinate-wise median and trimmed-
probability of error, we can run full-batch GD (yielding an mean) for bitering corrupt gradients in our setting, and then
error of % = O(H"?)); we analyze that itAppendix D \ye motivate and describe the robust accumulated gradient
with a much simplibed analysis than thatldfeorem 1 estimation (RAGE) procedure that we usedigorithm 1

Analysis of the approximation error. In Theorem 1the  @s @ subroutine at every synchronization index. Then we

approximation errobp esseptially c8nsists of two types of Prove our new matrix concentration result that is required
error terms% = O F{)f#z 14+ % (#+ 8 and% = to establish the performance guarantee of RAGE.

O(H"?2), where% arises due to stochastic sampling of Inadequacy of median and trimmed-mean:Coordinate-
gradients and% arises due to dissimilarity in the local Wise medianihed and trimmed-meartifmmear) are the
datasets. Observe tH# decreases as we increase the batcHWO widely used robust estimation procedures that are easy
sizeb of stochastic gradients and becomes zero if we tak&0 describe and implement, and they have been employed
full-batch gradients (which impliels = 0), as is the case earlier for robust gradient aggregation in distributed opti-
in Theorem 4in Appendix D Note that even though the mization; see, for exampleYip et al, 2018 2019 i.i.d. data
variance (and gradient dissimilarity) of accumulatiortbf ~ Setting) andXie et al, 20193 FL setting). Below we argue
gradients blows up by a factor bf2, still both% and% that these methods give poor performance in FL settings
have dinear dependence on the number of local iterationsfor learning high-dimensional models; we also validate this
H . Observe that since we are working with heterogeneou§!@im through experiments iiection 4

datasets, the presence of gradient dissimilarity bdtid ¥ For the simple task of robust mean estimation with inputs
(which captures the heterogeneity) in the approximatiorfOmMing a unit covariance distributiomedandtrimmean
error is inevitable, and will always show up when boundinghave an error that scales with the dimension a(Di-

the deviation of the true Oglobal® gradient from the decodétkonikolas et 2J.2019 Lai et al, 2018; when we apply
one in the presence of Byzantine clients, even wHen 1. these methods in each SGD iteration, this error translates to

a large sub-optimality gap in the convergence rate.
Convergence rates. In the strongly-convex casé\lgo- ¥ The adversary may corrupt samples in a way that they pre-
rithm 1 approximately, Pnds theOToptimaI parametgrs  serye the norm of the original uncorrupted samples, but have
(within 9 error) with 1& whe  speed. Note that different adversarially chosen directions (these are called

1& i ' exp =r#, which implies an exponen- directional attacks); since the performance of these methods

tially fast (in T/H) convergence rate. In the non-convex are based on the magnitude of the samples, they cannot
case Algorithm 1 reaches to a stationary point (witfiaer-  distinguish between the corrupt and uncorrupt samples.
ror) with a speed of2-—. Note that the convergence rates of ¥ When taking coordinate-wise median, for estimating each
vanilla SGD (i.e., without local iterations and in Byzantine- coordinate, we use onlysinglesample and discard the rest.
free settings) are exponential (i) and T; for strongly- This is not a good idea in large-scale settings with _npn—i.i.d.
convex and non-convex objectives, respectively; whereaélata, such as FL, where there are potentially millions of
our convergence rates are affected by the number of loc&lients, and if we somehow are able to use samples &bm
iterationsH . The reason for this is precisely because we(or most of the) honest clients, we could get a signiPcant
. . ~reduction in variance of stochastic gradientsimed we do

°As a concrete scenario, say the total number of devices ifiot take advantage of this variance reduction, which leads
R = 10 million and the server selects = 10,000 of them. 1, 5 harformance degradation, which may be detrimental

Then, even if we want robustness against one million maliciousf ¢ d h itv in d Th
clients, the total probability of failure of our algorithm would or performance due to heterogeneity in data. The same rea-

still be less than™¢' *°, which even ifT = 10° andH =1, son also applies to the robust gradient aggregation method
would still be less thad0' ’. Note that the bound on probability (KRUM) adopted in Blanchard et a).2017), which also

of error in Theorem lis a worst-case bound, and in practice, uses only one of the input gradients and discards the rest,
our algorithm succeeds with moderate parameter values; see, f@ﬁving poor performance.

example Section 4for our experimental setup and the results.

Robust Accumulated Gradient Estimation
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Robust mean estimation: The above limitations of tradi- Algorithm 2 Robust Accumulated Gradient Estimation
tional methods motivate us to employ modern tools from(RAGE) (Diakonikolas et a|.2019 Li, 2019
high-dimensional robust statisticBikonikolas & Kane 1. Input. K vectors g;,d,,...,gx ! R such
2019 Diakonikolas et al.2019 Lai et al, 2016. In particu- that there is a subset of ther§ | K]
:%rr, r\]/;/e l:IS.e the polynomlal-tlme outlle_r-blt(_arlng procedure with !|S| ( % having bounqu covariance
gh-dimensional robust mean estimation (RME) from 1 T
(Diakonikolas et a].2019 for robust gradient aggregation in max [ s (9i & 95) (9i & 9s)
Algorithm 1. For clear exposition of the ideas behind their g5 = ﬁ i1s0i
algorithm, we use a version of their algorithm as described 5. For anyw ! [0, 1€ with $w$; > 0, dePne
in Algorithm 2, which is from (i, 2019. The crucial obser-
vation in these RME algorithms is that if the empirical mean
of the samples is far from their true mean, then the empirical
covariance matrix has high largest eigenvalue. So, the idea

1 2, where

K

= W,
H(W)_ - $N$1gl

nK
is to |terat.|ve_ly Dltgr out samples that havg _Iarge projection I (w) = L(gi & pw))(g; & p(w)T
on the principal eigenvector of the empirical covariance o1 Sw$;

matrix, and keep on doing it until the largest eigenvalue of

the empirical covariance matrix becomes sufbciently small 3: Letw© =[2, ..., 2]be alengttK vector.
(line 7). This is done via a soft-removal method, where 4: LetC ( 11be a universal constant.

we assign weights (conbdence score) to the samples and: Let! @ =1 (w©).

down-weighting those that have large projection (lid 6: Lett=0.
D in each iteratioh, at least one sample (whose projection 7: while ( max (! (W(t))_) >C! §_d0 ©
' ) is the maximum) get® weight. In the end, take the 8  Letv'” be the principal ejgenvector of(w ™).

. . . 2
weighted average of the surviving sampfies. 9: Fori! [K],depne Y = V(t)ago/ég‘ U(Wm& :
(t)
The RME algorithms overcome most of the above-10: Fori ! [K], computewi(”l) = 1& $(‘T Wi(t),
mentioned limitations of traditional methods, except for e
i 1 i where' {2, = max 0
that their guarantees are not directly applicable to our set- max iwVs0 i

ting. This is because the error guarantee of RME algorithmd 1: t = t_+ 1
are given in terms of concentration of the good samples.2: end while
around their sample mean, which is easy to bound if good 3: return ¢ =
samples come from theamedistribution. Note that our
setup signibcantly deviates from this, where not only the
m_put sample_s (vv_h|ch are agcumulated gradients) come fromunning with a bxed step-sife' =1, whereK, denotes
differentdistributions (as clients have heterogeneous datag . . 8HL )
. . . he set oK clients that are active at tinte [0 : T]. Take
but each of them is also a sumtdfstochastic gradients (due . L
. . . . . any two consecutive synchronization indi¢gstx+; ! | t.
to local iterations). Since local iterations cause local paramg, . :
. . . ote that|ty+; & tx]| ' H. For an honest client! Kg,,
eters tadrift from each other, bounding the concentration of ™ ""3 "¢ teay ' 1 X X
: = Kt ~g,(x}) denote the sum of local

good samples requires bounding this drift. €l0raccu = =y, _ .
mini-batch stochastic gradients sampled by cliebhetween

To this end, we develop a novel matrix concentration intimet, andty.; , whereg, (xt) ! y |:r$ b(xtr) satisbeg4),
equality that Prst shows an existence of a large subset of u(B). At iterationt,.1 , every honest client ! Ky, reports its
corrupted accumulated stochastic gradients and then boungiscal modelx (™ to the server, from which server computes
their concentration around the sample mean;(@g&n The-  gix:tka (see [ine 15 ofAlgorithm 1), whereas, the corrupt
orem 2below. As far as we know, this is the Prst matrix cjients may report arbitrary and adversarially chosen vectors
concentration result in an FL setting. in RY. Server does not know the identities of the corrupt

. . . : tyr
First we setup the notation. Lédgorithm 1 generate a clients, and its goal is to produce an estimags " of the
sequence of iteratefx! : t ! [0 : T],r | K} when average accumulated gradients from honest clients.

K Wi(‘)
i=1 (W(t)(lgi-

Theorem 2(Matrix concentration) Suppose a#fraction

5Note that the outlier-bltering procedure described\igo- fK clients that icate with th t
rithm 2is intuitive and easy to understand. There are better aIgoQ clients that communicate wi € server are corrupt.

rithms that are also more efbcient and can achieve better guaraht the setting described att)OtVe, suppose we are given
tees; see, for exampleDéng et al, 2019. All these algorithms R accumulated gradient§,“;csit .1 ! Ky, in RY, where
require the same bounded matrix concentration assumption thafrc tks — ~totcsr e o & ; ; ;

we show inTheorem 2thus making them applicable to use as a °" accu Or/accu if rOth clle_-nt IS hon(—::st,lothervwsg can
subroutine inAlgorithm 1 without requiring any modibcation in b€ arbitrary. For any# > 0, if (#+ #) ' 3, then with

our analysis. probability 1 & exp(& '2(1176%) there exists a subset#
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Ky, of uncorruptedyradients of siz¢l 8;#(#+ #)K s.t. vyt oyt be a sequence @i & ty)
1 H (dependent) random variables, where for any [ty :
(nox 157 (08 05)(5 & 05)" (depencent) Y B

s tk+1 & 1], the random variabl¥,' is distributed as
[ 1

| b . 00F
' 25|;I2 1+ id#+28H2u2' (7) Yit [ Unif Fi$b X;[ Xitk,Yitk,...,Yit 1 . (8)
‘ . . .
. ot _ L( ' ti i Here,Y;' corresponds to the/mlyu—batch stochastlcograd|-
where, fori ! S, gi = Oiaceu 195 = §7  i1sGiace + ent sampled from the s&®®” x| x{x, ', ...,y 1

and(max denotes the largest eigenvalue. which itself depends on the local parametels (which is

Theorem Zstablishes the concentration results required fo@ deterministic quantity) at the last synchronization index
the RME algorithm (described ilgorithm 2) that we em- and the past realizations ¥f'*, ..., Y;" *. This is because
ploy in Algorithm 1. This RME algorithm takes a collection the evolution of local parametex$ depends on;* and the

of vectors as input, out of which an unknown large subsehoice of gradieris in between time indidgsandt & 1.

(at least &-fraction) is promised to be well-concentrated NOW dePneY; := * I Y. Letp; be the distribution
around its sample mean, and outputs an estimate of th@ Yi, which we will take when usingemma 1

sample mean. The formal guarantee is given as follows: |t is not hard to show that for any honest client K;, ,

Theorem 3(Outlier-Pltering algorithmDiakonikolas etal. e haveE$Y; & E[Y;]$? ' Lb#z_ It is also easy to see

2019). Under the same setting and notationTdfeorem 2 that the hypothesis dfemma lis satisbed withi; =
Webcabnl Pnd an Esgma@of 9% in pqungmial;’t;nehwith E[Yi],!2 = H2#2 for all honest clients | Ky, , i.e., we
robability 1, such t & 'O !y #+ #,where ' 2,2
!pg: ZSEI){#Z lsl+ % +289|_72"2. ° haveEyi) Pi [-yi&E[yi]!V'z]I %’)V ! Rd,$\/$:1-
' We are giverK different accumulated gradients (each is a
Note that, instead of the RME algorithm, if we usedor summation oH gradients), out of which at leagt & #HK
rimmean we would get an extra multiplicative factor of are according to the correct distribution. By considering
din the upper-bound ofig & gs$ above. only the uncorrupted gradients (i.e., takimg= (1 & #K ),
we have fromLemma 1that there exists a subse## K;,
3.1. Proof-sketch ofTheorem 2B Matrix Concentration of size(L & (1 & HK ( (1 & (#+ HK ( % that
satisbes (in the following;; = y; & E[y;])

In order to proveTheorem 2we use the following result

from (Data & Diggavj 20203 Lemmal): ( Py g yT#' w2 - 4H?! 2! 14 3 # ©)
Lemma 1 ((Data & Diggavi 20203 Lemmal)). Suppose s, 0T R 2K
there arem independent distributiong;, p2, ..., Pm in ' o )

RY such thatEy, p [y] = u;.i ! [m] and eachp; has Note that(9) bounds the deviation of the points $hfrom

a bounded variance in all directions, i.eE,) p [y & their respective mearigy;]. However, in(7), we need to
Wv.2] !S- Jv ! RI$v$ = 1. Take any# > bound thEe deviation of the points B from their sample

0. Then, givém independent samples,, Yo, ..., Y, meanﬁ i1 sYi- As it turns out, due to heterogeneity
wherey, / p;, with probability 1 & exp(&#2m/ 16), in data and our use of local iterations, this extension is

there is a subsetS of (1 & #m_points such that Nnon-trivial and requires some technical work, given next.

( max Isid) 0s (Vi &H) (Y & Hi)T v e 1 + From the alternate debnition of the largest eigenvalue of

[l

' symmetric matricedA ! RY 9, we have(max(A) =
SUR,1 Re (v (=1 vT Av. With this, @) is equivalent to

Lemma 1shows that if we haven independent distributions 1"

each having bounded variance, and we take one sample from sup  —  -y; & E[y;l,v.?" 2. (10)

each of them, then there exists a large subset of these sam-  v! R%:(v(=1 IS i's

ples that has bounded variance as well. The important thing (

to note here is that th@ samples come fromifferentdistri- ~ Debney g := ﬁ i1 g ¥; to be the sample mean of points

butions, which makes it distinct from existing results, suchi, s Take an arbitrary unit vectar ! RY. Using some

as Charika}r et a_l._2017, Proposition B.1), which shows algebraic manipulations provided Appendix A we get
concentration of i.i.d. samples. "

__d |2 = . 12
T m , Where! = MAXG1 my ! 5 -

1 .
Now we give a proof-sketch dfheorem 2with the help of R &Ys, V.2 BHG+
Lemma 1 A complete proof is provided iAppendix A its ;
. . 3 4 1 ) 1 2
Letty, txs1 ! |1 be any two consecutive synchronization sl sl Ely;] & Ely; ] (11)

indices. Foii ! Ky, corresponding to an honest client, let irs | li! S
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Using the gradient dissimilarity bound and tHe- and is distributed among tH200 clients in the following
smoothness ofF, we can show that for honest heterogeneousianner: Each client takes a random permuta-
cli%\nts s, ! Ky, we have $Edyr]& E[y5]$2 ' tion of the probability vectof0.8,0.1,0.1,0,0, 0,0, 0, 0, 0].

H ;k;tlk g2 +3L2E$x! & x'$% . Using this bound Suppose it obtains a vectprsuch thatp; = 0.8,p =

in (11) together with some algebraic manipulations, we get0.1, p« = 0.1 for some distinct,j,k ! [0 : 9]andp =0

for the rest of the indices, then it seleatsiformly at random

|§1| -y & Yg, V.2 BKZ+24H2"2 800 100, 100training images with label j, k , respectively.
s Adversarial attacks: We havel2.5% adversarial clients,
1oHL 2" q " e d i.e., 25 out of 200clients are corrupt, and the corrupt set
t t 2 . . . . .
+ S| S| ESx; & xs$° (12)  of clients may change in every iteration. We implement
ir's jits t=t six adversarial attacks(i) the Orandom gradient attackO,

where local gradients at clients are replaced by indepen-
Now we bound the last term ¢12), which is the driftin  dent Gaussian random vectors having the same hasm
local parameters at different clients in between any twahe corresponding gradients) the Oreverse average gradi-
synchronization indices. ent attackO, where corrupt clients send -ve of their average
local gradients{iii) the Ogradient shift attackO, where lo-
cal gradients of corrupt clients are shifted by a scaled (by
factor of 50) Gaussian random vector (same for afly)
o o . ] the Qall ones attack®, where gradients of the corrupt clients
Substituting this in(12) together with some algebraic ma- 5, replaced by the all ones vector) the OBaruch attackO,

Lemma 2. If $ ' | sy uwe have

e TESKE & xi$ THIS B 4302

t=1tg

nipulations provided ippendix A we get which was designed irB@ruch et al.2019 specibcally
" THEL 3d # for coordinate-wise trimmed meatri(nmean) (Yin et al,
5 Vi& ys,V.2" W 1+ o0 + 28H%"2. 2019, Krum (Blanchard et a).2017), and Bulyan flhamdi
IS| i1s et al, 2018 defenses; anflri) the Oreverse scaled average

) ) § gradient attackO, where corrupt clients compute the -ve of
Note that this bound holds for all unit vectard R®. Now their average local gradients, scale it by the factd@fand

N PR T totker . :
substitutingg;‘acci’ = Yi 9s accu = Ys and using the  then send it.

alternate depbnition of largest eigenvalue proviesorem 2 )
Performance: We train our neural network under all

. the above-described adversarial attacks, and demonstrate
4. Experiments in Figure 1the performance of our method (red color)

In this section, we present preliminary numerical results or@inst four other methods for robust gradient aggregation,

a non-convex objective. Additional implementation detailsn@mely.coordinate-wise trimmed-meghlack color) and

can be found irppendix Fin the supplementary material. coordinate-wise mediaggreen color), which were used in
(Xie et al, 20193 Yin et al,, 2018 2019, Krum (magenta

Setup: We tl’ain a Single |ayer neural netWOfk fOI’ image Co|0r), Wh|ch was proposed irB(anchard et aJZOlD, and
classibcation on the MNIST handwritten d|g|t (frdBFQ) Bulyan (Cyan C0|0r)7 Wh|Ch was proposed MMamd| et aL
dataset. The hidden |ayel‘ has 25 nodes with ReLU aCtQOla For reference' we also p|0t (|n blue C0|Or) the per-
vation function and the output has softmax function. Theformance ofalgorithm 1 with the same setup as above but
dimension of the model parameter vectofl @885 All  \ithout adversaries and with no decoding. For each attack,
clients compute stochastic gradients on a batch-si228f \ve plot two curves, one for training loss vs. number of
in each iteration and communicate the local parameter vegpochs and the other for test accuracy vs. number of epochs.
tors with the server after taking = 7 local iterations. ) )

For all the defense mechanisms, we start with a step-siz& ¢an be seen from the comparisonfiigure 1that our

$ = 0.08and decrease its learning rate by a factod.66 method consistently outperforms all these methods in all the

when the difference in the corresponding test accuracies iAttacks that we have implementé¢h particular, for attacks

the las2 consecutive epochs is less tHa001 8Note that changing the direction while keeping the norm same

Heterogeneous datasetsThe MNIST dataset ha0, 000 is among the worst attacks as the corrupt gradients cannot be

L . . - bltered out just based on their norms.
training images (with6000 images of each label) and *We found out that the Bulyan defense mechanism is signif-

10,000test images (each havirB80 28 = 784 pixels), icantly slower than all other mechanisms. Due to this, we only

T Toanr ok - . . implemented this for the Baruch-attack, which was specibcally
784* 25 =19, 600weights between the input and the Prst yegjgned against Krum/Bulyan algorithms. Since a basic building

layer, 25 bias terms (one for each node in the hidden layzsy, lock of Bulyan is Krum, and Krum performs the worst among all

10 = 250 weights between the Prst layer and the output layer, andpe mechanisms that we implemented, we do not expect Bulyan
10 bias terms (one for each node in the output layer).
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